1.
2.
Maths Problem PLEASE HELP? |
Resolved Question
Average bond energy, chemistry question?From the following data, calculate the average bond energy for the N-H bond
NH3(g) → NH2(g) + H(g) ΔH° = 435 kJ
NH2(g) → NH(g) + H(g) ΔH° = 381 kJ
NH(g) → N(g) + H(g) ΔH° = 360 kJ
Answer in kJ/mol
NH3(g) → NH2(g) + H(g) ΔH° = 435 kJ
NH2(g) → NH(g) + H(g) ΔH° = 381 kJ
NH(g) → N(g) + H(g) ΔH° = 360 kJ
Answer in kJ/mol
Best Answer - Chosen by Asker
by Mukti
NH3(g) → NH2(g) + H(g) ΔH° = 435 kJ
NH2(g) → NH(g) + H(g) ΔH° = 381 kJ
NH(g) → N(g) + H(g) ΔH° = 360 kJ
__________________________________ +
NH3 -----> 3 H (g) ΔH° = 1176 kJ
the average bond energy for the N-H bond
= 1176 kJ / 3 = 392 kJ / mole
NH2(g) → NH(g) + H(g) ΔH° = 381 kJ
NH(g) → N(g) + H(g) ΔH° = 360 kJ
__________________________________ +
NH3 -----> 3 H (g) ΔH° = 1176 kJ
the average bond energy for the N-H bond
= 1176 kJ / 3 = 392 kJ / mole
- 3 days ago
- 0 Rating: Good Answer
- 0 Rating: Bad Answer
- Report Abuse
How much heat energy, in kilojoules, is required to convert 75.0 g of ice at -18.0 *C to water at 25*C?
In Chemistry - Asked by Fun&Sweet
How much heat energy, in kilojoules, is required to convert 75.0 g of ice at -18.0 *C to water at 25*C?
Express your answer numerically in kilojoules.
Specific heat of ice: 2.09 J/(g x *C)
Specific heat of liquid water: 4.18 J/(g x *C)
Enthalpy of fusion: 334 J/g
Enthalpy of vaporization: 2,250 J/g
Specific heat of ice: 2.09 J/(g x *C)
Specific heat of liquid water: 4.18 J/(g x *C)
Enthalpy of fusion: 334 J/g
Enthalpy of vaporization: 2,250 J/g
Best Answer - Chosen by Asker
by Mukti
i). heat energy to convert ice at -18.0 C to ice at 0 C
Q1 = m ice * c ice * delta t
Q1 = 75.0 * 2.09 * ( 0 - (-18))
Q1 = 2821.5 J
ii). heat energy to convert ice at 0 C to water at 0 C
Q2 = m * heat of fusion
Q2 = 75.0 * 334 = 25050
iii). heat energy to convert water at 0 C to water at 25 C
Q3 = m water * c water * delta t
Q3 = 75.0 * 4.18 * ( 25 - 0)
Q3 = 7837.5
heat energy required to convert 75.0 g of ice at -18.0 *C to water at 25*C = Q1 + Q2 + Q3
= 2821.5 + 25050 + 7837.5 = 35709 J = 35.709 kJ
Q1 = m ice * c ice * delta t
Q1 = 75.0 * 2.09 * ( 0 - (-18))
Q1 = 2821.5 J
ii). heat energy to convert ice at 0 C to water at 0 C
Q2 = m * heat of fusion
Q2 = 75.0 * 334 = 25050
iii). heat energy to convert water at 0 C to water at 25 C
Q3 = m water * c water * delta t
Q3 = 75.0 * 4.18 * ( 25 - 0)
Q3 = 7837.5
heat energy required to convert 75.0 g of ice at -18.0 *C to water at 25*C = Q1 + Q2 + Q3
= 2821.5 + 25050 + 7837.5 = 35709 J = 35.709 kJ
- 2 Rating: Good Answer
- 0 Rating: Bad Answer
- Report Abuse
How do i balance these equations plus the nuetralization and combustions?
In Chemistry - Asked by Brenda -
Resolved Question
Show me another »How do i balance these equations plus the nuetralization and combustions?
Single replacement,
Al+ Fe2(SO4)3 ----->
Fe(III) + Pb(NO3)4 --->
double replacement,
Na2SO4+ AgNO3 --->
KOH + Fe(NO3)3 --->
I have no idea how to balance nuetralizations and combustions..here is one of each..
Nuetralizations,
H2SO4+ NaOH -->
Combustion,
C6H12O6 + O2 ---->
Al+ Fe2(SO4)3 ----->
Fe(III) + Pb(NO3)4 --->
double replacement,
Na2SO4+ AgNO3 --->
KOH + Fe(NO3)3 --->
I have no idea how to balance nuetralizations and combustions..here is one of each..
Nuetralizations,
H2SO4+ NaOH -->
Combustion,
C6H12O6 + O2 ---->
Best Answer - Chosen by Asker
by Mukti
2 Al+ Fe2(SO4)3 -----> Al2(SO4)3 + 2 Fe
4 Fe(III) + 3 Pb(NO3)4 ---> 4 Fe(NO3)3 + 3 Pb(IV)
Na2SO4+ 2 AgNO3 ---> Ag2SO4 + 2 NaNO3
3 KOH + Fe(NO3)3 ---> 3 KNO3 + Fe(OH)3
H2SO4+ 2 NaOH --> Na2SO4 + 2 H2O
C6H12O6 + 6 O2 ----> 6 CO2 + 6 H2O
4 Fe(III) + 3 Pb(NO3)4 ---> 4 Fe(NO3)3 + 3 Pb(IV)
Na2SO4+ 2 AgNO3 ---> Ag2SO4 + 2 NaNO3
3 KOH + Fe(NO3)3 ---> 3 KNO3 + Fe(OH)3
H2SO4+ 2 NaOH --> Na2SO4 + 2 H2O
C6H12O6 + 6 O2 ----> 6 CO2 + 6 H2O
F(x)=x^3-3ax^2+3bx+c has a local max at a(x1,y1) and a local min at b(x2,y2)?
In Mathematics - Asked by Elainee - 2 answers
Resolved Question
F(x)=x^3-3ax^2+3bx+c has a local max at a(x1,y1) and a local min at b(x2,y2)?
f(x)=x^3-3ax^2+3bx+c has a local max at a(x1,y1) and a local min at b(x2,y2) prove that the point of inflection of f(x) is the midpoint of the line segment ab
Best Answer - Chosen by Asker
by Mukti
f(x)=x^3-3ax^2+3bx+c
f'(x) = 3x^2 - 6ax + 3b
f''(x) = 6x - 6a
the local max : f''(x) < ab =" 1/2" 6a =" 0" x2 =" 2a" x2 =" 2a"> 0
f''(x2) > 0
6x2 - 6a > 0
x2 > a
2a - x1 > a
a > x1...... (2)
(1) = (2)
f'(x) = 3x^2 - 6ax + 3b
f''(x) = 6x - 6a
the local max : f''(x) < ab =" 1/2" 6a =" 0" x2 =" 2a" x2 =" 2a"> 0
f''(x2) > 0
6x2 - 6a > 0
x2 > a
2a - x1 > a
a > x1...... (2)
(1) = (2)
Other Answers (1)
by Coolnh
1) Midpoint of (x1,y1) and (x2,y2) = { (x1 + x2) / 2, (y1 + y2) /
2) f(x) = x^3 - 3ax^2 + 3bx + c
at maxima and minima, f'(x) (derivative of f(x) with respect to x) = 0
f'(x) = 3x^2 - 6ax + 3b = 0
f'(x) = x^2 - 2ax + b = 0
A quadratic equation has maximum two solutions. So the solution of these points gives x1 and x2 (the two points where f'(x) = 0, also called critical points)
The sum of these roots = 2a (sum of roots of a quadratic equation = -1 * coefficient of x / coefficient of x^2
and product of these roots = b ( constant term / coefficient of x^2)
hence, x1 + x2 = 2a => (x1 + x2) / 2 = a
3) point of inflection : a point where f''(x) = 0 (derivative of f'(x) = 0)
f'(x) = 3x^2 - 6ax + 3b
f''(x) = 6x - 6a = 0
so, x = a is the point of inflection...
when x=a, y= f(a)
hence, (a, f(a)) is the point of inflection... which is also the midpoint of (x1,y1) and (x2,y2)
4)You should also prove that y1 + y2 = 2 f(a) but that would make this already big answer HUGE.
try doing it yourself... i'll give some hints:
y1 = f(x1)
y2 = f(x2)
now y1 + y2 = f(x1) + f(x2) {Now expand using f(x)}
and use the following identities : a^3 + b^3 = (a + b)(a^2 – ab + b^2)
and a^2 + b^2 = (a+b)^2 - 2ab
If you cant do it, add additional details and i'll help you with it (i'll probably write it down and scan it)
I've used some basic formulae of calculus and quadratic equations... if you there's anything you can't understand, again, add additional details and i'll be happy to help!
7.
In Mathematics - Asked by leanne m - 5 answers -
Asker's Rating: Asker's Comment: Bner, tepat, dan cara penyelesaiannya jelas. Terima kasih atas jawabannya.
2) f(x) = x^3 - 3ax^2 + 3bx + c
at maxima and minima, f'(x) (derivative of f(x) with respect to x) = 0
f'(x) = 3x^2 - 6ax + 3b = 0
f'(x) = x^2 - 2ax + b = 0
A quadratic equation has maximum two solutions. So the solution of these points gives x1 and x2 (the two points where f'(x) = 0, also called critical points)
The sum of these roots = 2a (sum of roots of a quadratic equation = -1 * coefficient of x / coefficient of x^2
and product of these roots = b ( constant term / coefficient of x^2)
hence, x1 + x2 = 2a => (x1 + x2) / 2 = a
3) point of inflection : a point where f''(x) = 0 (derivative of f'(x) = 0)
f'(x) = 3x^2 - 6ax + 3b
f''(x) = 6x - 6a = 0
so, x = a is the point of inflection...
when x=a, y= f(a)
hence, (a, f(a)) is the point of inflection... which is also the midpoint of (x1,y1) and (x2,y2)
4)You should also prove that y1 + y2 = 2 f(a) but that would make this already big answer HUGE.
try doing it yourself... i'll give some hints:
y1 = f(x1)
y2 = f(x2)
now y1 + y2 = f(x1) + f(x2) {Now expand using f(x)}
and use the following identities : a^3 + b^3 = (a + b)(a^2 – ab + b^2)
and a^2 + b^2 = (a+b)^2 - 2ab
If you cant do it, add additional details and i'll help you with it (i'll probably write it down and scan it)
I've used some basic formulae of calculus and quadratic equations... if you there's anything you can't understand, again, add additional details and i'll be happy to help!
7.
In Mathematics - Asked by leanne m - 5 answers -
Limits problem?? please help.?
lim tan x - sin x/ x^3
x-->0
x-->0
Best Answer - Chosen by Asker
by Mukti
lim (tan x - sin x) / x^3
x-->0
lim (six/cosx - sin x) / x^3
x-->0
lim {(sinx - sinx cosx)/ cosx} / x^3
x-->0
lim {( sinx (1-cosx)) / cosx} / x^3
x-->0
lim {sinx 2sin^2 (1/2 x) } / x^3 cosx
x-->0
lim 2 (sinx/x) (( sin1/2 x) /x) (( sin1/2 x) /x) 1/cosx
x-->0
= 2 * 1 * 1/2 * 1/2 * 1/1 = 1/2
x-->0
lim (six/cosx - sin x) / x^3
x-->0
lim {(sinx - sinx cosx)/ cosx} / x^3
x-->0
lim {( sinx (1-cosx)) / cosx} / x^3
x-->0
lim {sinx 2sin^2 (1/2 x) } / x^3 cosx
x-->0
lim 2 (sinx/x) (( sin1/2 x) /x) (( sin1/2 x) /x) 1/cosx
x-->0
= 2 * 1 * 1/2 * 1/2 * 1/1 = 1/2
Other Answers (4)
- by AyushApply LH rule differentiate numerator and denominator seperately thrice and get it as 1/2
- by sonia lit can be done by solving two different limits.
1) tanx, lim x->0 which is 0.
2) sinx/x^3, lim x->0.
you can write it as. (1/x^2)*(sinx/x)
sinx/x, lim x->0 is 0. (1/x^2)*(sinx/x), lim x->0 is 0.
so the answer is 0. you can also solve it using the L' Hopital's rule. - by Ayan
- tan x = sin x / cos x
(sin x * (1- cos x)) / (x^3 * cos x)
(sin x/x) * ((1-cos x)/x^2) (1/cos x)
taking limit x-->0
1 * 1/2 * 1/1 = 1/2 or 0.5 - by Preety
- lim sinx(1\cosx-1)\x^3 =sinx\x [1-cosx]\cosx\x^2 = 1\2
x-->0
since, lim sinx\x=1 and (1-cosx)\x^2=1\2
x-->0
Trigonometri bagian 3, tolong jawab ini ?
Sederhanakanlah bentuk-bentuk berikut.
a. cos A + sin (270+A) - sin (270-A) + cos (180+A)
b. cos (60+A) - sin (-30+A)
c. cos (-30+A) - sin (A+60)
Ini soal ada di buku LKS saya, tolong dong jawab pertanyaan ini dengan cara penyelesaian dan jawbannya apa\ ?? Aku kesulitan mengerjakan soal ini.
a. cos A + sin (270+A) - sin (270-A) + cos (180+A)
b. cos (60+A) - sin (-30+A)
c. cos (-30+A) - sin (A+60)
Ini soal ada di buku LKS saya, tolong dong jawab pertanyaan ini dengan cara penyelesaian dan jawbannya apa\ ?? Aku kesulitan mengerjakan soal ini.
Additional Details
karena ada 1 pertanyaan saya yang belum kepublik karenaa sistemnya error... silahkan jawab pertanyaan saya yang ini juga ya ???
http://id.answers.yahoo.com/question/ind…
http://id.answers.yahoo.com/question/ind…
Best Answer - Chosen by Asker
by Muktia. cos A + sin (270+A) - sin (270-A) + cos (180+A)
cosA - cosA + cosA - cosA = 0
b. cos (60+A) - sin (-30+A)
=cos (60+A) - sin (A - 30)
=cos60 cosA - sin60 sinA - (sinA cos30 - cosA sin30)
=1/2 cosA - 1/2akar3 sinA - 1/2akar3 sinA + 1/2 cosA
=cosA - akar3 sinA
c. cos (-30+A) - sin (A+60)
= cos (A - 30) - sin (A+60)
= cosA cos30 + sinA sin30 - ( sinA cos60 + cosA sin60)
= 1/2akar3 cosA + 1/2 sinA -1/2 sinA - 1/2akar3 cosA
= 0
cosA - cosA + cosA - cosA = 0
b. cos (60+A) - sin (-30+A)
=cos (60+A) - sin (A - 30)
=cos60 cosA - sin60 sinA - (sinA cos30 - cosA sin30)
=1/2 cosA - 1/2akar3 sinA - 1/2akar3 sinA + 1/2 cosA
=cosA - akar3 sinA
c. cos (-30+A) - sin (A+60)
= cos (A - 30) - sin (A+60)
= cosA cos30 + sinA sin30 - ( sinA cos60 + cosA sin60)
= 1/2akar3 cosA + 1/2 sinA -1/2 sinA - 1/2akar3 cosA
= 0
9.
Sebutkan 5 senyawa non elekroit? |
10.
Help with a chemistry problem please? |
11.
Some chemistry help would be appreciated!!!? |
Tidak ada komentar:
Posting Komentar